Evolution of Carbon Fibre Morphology: Considerations of PAN Copolymer Precursor Design

Jeff Wiggins
Director, School of Polymers and High Performance Materials
University of Southern Mississippi

Carbon Fibres Future Conference
Carbon Nexus 2017
34 Australian Polymer Symposium

Darwin Mindil Beach Beer Can Boat Races
THAMES POLYMER SCIENCE RESEARCH CENTER

2015-16 Statistics:
> 16,000 Students @ USM
> $80M Funded Research
72 Ph.D. Students in Polymer Science & Engineering
110 B.Sc. Students in Polymer Science & Engineering
106,000 ft.² Research Center
13 Faculty in Polymer Science
> $14M Annual Research Funding
USM-Deakin Carbon Fibre Milestones

- Oct 2010 Met Deakin Administration in Salt Lake City
- Feb 2011 Carbon Fibre Future Directions Conference
- Sept 2011 Deakin/USM/UK/Oak Ridge/Cytec/Boeing Team Formed
- Apr 2012 University of Kentucky Meeting
- Nov 2012 Despatch Kit Review Minneapolis
- Feb 2013 Carbon Fibre Future Directions Conference
- May 2013 Deakin / Oak Ridge “Queen Mary Summit” Long Beach
- Jun 2013 Deakin University “Thinker In Residence”
 - CSIRO / White-Fiber Strategy Discussions
- Sept 2014 Deakin/USM/UK/Cytec Fibre Made
Progress in Geelong

June 2012

September 2012

June 2013
July 2013
WHERE IS STEVE CHRISTENSEN?
SC1: Think in Terms of “First Principles” Multi-Scale

- Building Block approach in place for decades
- New materials development a separated activity
- Connection across the discrete-continuum border

The atoms to airplanes model – Requires a “Physics” based approach
SC2: Think About Computational Methods for Next Generation Materials Development

- Quantum
- Molecular Dynamics
- Mesoscale
- Statistical Methods

Computational Simulations used for virtual properties development
SC3: Think about Bonded vs. Non-Bonded Forces

\[v_f = \frac{2\pi r_f^2}{a^2} \]

\[R = \frac{a}{\sqrt{2}} - 2r_f = r_f \left[\left(\frac{\pi}{v_f} \right)^{\frac{1}{2}} - 2 \right] \]
SC4: Develop Matrices in Terms of Irreversible Deformation in Strain Space

Onset Theory:
- Strain rather than stress based method for continuum level analysis of composites
- Quantifies the strain environment within a composite using invariants
- Invariants of strain can be used as scalar descriptors of a critical event

\[J_1 = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 \]
\[J_2 = \varepsilon_1 \varepsilon_2 + \varepsilon_1 \varepsilon_3 + \varepsilon_2 \varepsilon_3 \]
\[J_3 = \varepsilon_1 \varepsilon_2 \varepsilon_3 \]
\[\varepsilon_{volumetric} = J_1 + J_2 + J_3 - J_1 \]
\[\varepsilon_{von Mises} = \sqrt{0.5[(\varepsilon_1 - \varepsilon_2)^2 + (\varepsilon_1 - \varepsilon_3)^2 + (\varepsilon_2 - \varepsilon_3)^2]}} \]
“Critical strain” for yield –related to phenyl ring rotation and buckling of glycidyl unit

Drop in stresses due to Torsional rearrangement

Steve Christensen – Boeing (Unpublished)

Work preformed at Univ. of Michigan, PI: Prof. Veera Sundararaghavan
Glassy Polymer Matrix Molecular Design

• Select monomers for torsional conformations – increased distortional deformation
• Consider pendant groups and ring links
• Understand nano-particle contributions
• Isomer influences on torsions
• Reactivity, kinetics and processability
• Stoichiometric considerations
• Cure influence on architecture and morphology
• Primary properties of interest:
 • Compression Strain
 • Tg
 • Modulus
 • Fluid / Environmental stability
• Other properties:
 • Heat of reaction / exotherm / out-time
 • CTE
 • density
Hybrid AEK Networks

5RA/DDS Blended Networks (20, 10, 5 mol %)

4RA/DDS Blended Networks (20, 10, 5 mol %)

Baseline Chemistry

AEK Chemistries

5RA

4RA

2/27/2017 DEAKIN FIBRE HUB
AEK Mechanical Properties

- AEK networks have overall improved mechanical properties
 - 4RA-TGDDM has 20% increase in modulus, 19% increase in strength, 40% increase in strain
 - 5RA-TGDDM has 23% increase in modulus, 18% increase in strength, 37% increase in strain
 - Low concentrations of both AEKs provide improved strain and modulus

- Improved properties attributed to a number of factors:
 - Increased molecular weight between crosslinks (conformational degrees of freedom)
 - Increased secondary interactions (intermolecular cohesion)
Novel Low-Energy Processing Reactor Science

Batch Reactor
- Increased matrix viscosity
- Long reaction time
- Substantial energy consumption

Continuous Reactor
- Solvent free
- Excellent heat transfer & mixing ability
- Reduces reaction time
- Reduces cost

DEAKIN FIBRE HUB
Benzoxazine Matrix Composites

Poly(benzoxazines)

Near-zero shrinkage

High thermal stability

Excellent flame resistance

Low water absorption

Shortcoming of benzoxazines in aerospace composites result from unfavorable processability

MWCNT/Epoxy Prepolymers Continuous Reactor

- Not efficient MWCNT dispersion using twin screw extruder
- Unstable MWCNT dispersion due to re-agglomeration

Hot Zone (160~220°C) Cold Zone (RT~100°C)
Next Generation Matrix Prepreg
Final Tensioning / Alignment
New Polymer Matrix Carbon Fiber Prepreg

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Spindle Speed (RPM)</th>
<th>Viscosity (Poise)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>5</td>
<td>8000</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
<td>900</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
<td>700</td>
</tr>
<tr>
<td>80</td>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>90</td>
<td>20</td>
<td>200</td>
</tr>
</tbody>
</table>

2/27/2017
New Toughened Matrix Carbon Fiber Prepreg
Multi-Functional Carbon Fiber Composites
Benzoxazine Matrix Carbon Fiber Composites
Carbon Fiber Tow-Preg
MECHANICAL ANALYSIS
Scalable Nano Processing Platform Developed

- Continuous Nano Matrix Reactor Developed
- Nano Matrix Lamination Films Developed
- Nano Matrix Prepreg Developed
- Nano Matrix Test Panels Developed
Motivation: Precursor Science

To understand the fundamental polyacrylonitrile properties that drive morphological defects in carbon fiber development

![Chemical structure](image)

Graphite Fiber Matrix Composite

Theoretical is based on perfect graphite fiber

Chand, S. *Journal of Materials Science* 2000, 5, 1303–1313

To understand the fundamental polyacrylonitrile properties that drive morphological defects in carbon fiber development.

Fiber

Composite

Matrix

Tensile Modulus (GPa)

- Theoretical: 1000 GPa
- HexTow IM10: 800 GPa
- Torayca T1000G: 750 GPa
- Thorol T650: 600 GPa
- Panex 35: 200 GPa

Graphical representation of stress-strain behavior and tensile modulus for different types of carbon fibers.

Theoretical is based on perfect graphite fiber
International Collaboration

- The University of Southern Mississippi
- University of Kentucky
- Deakin University

- Controlled Precursor Chemistry
- Oak Ridge National Laboratory
- Fiber Spinning
- Carbonized and Sized Carbon Fibers

DEAKIN FIBRE HUB
Carbon Fiber Strength v. Modulus

![Graph showing carbon fiber strength vs. modulus]

- T300
- T650/35
- Panex 35
- M65J
- M60J
- M55J
- M50J
- M46J
- M40J
- PV42/850
- MR60H
- IM9
- IM10
- T1000G
- IMS
- UMS

Tensile Modulus (GPa) vs. Tensile Strength (GPa)

2/27/2017
DEAKIN FIBRE HUB
Conversion of PAN into Carbon Fiber

Goal: Understand fundamental polyacrylonitrile properties that drive morphological defects in carbon fiber development

Polyacrylonitrile

250 to 400 °C

400 to 1200 °C

1200 to 2000 °C

Carbonized Fiber
Precursor Chemistry Parameters

- Comonomers
- Comonomer sequencing
- Molecular weight
- Polydispersity
- Tacticity
- End groups
- Crystallinity
- Solubility

\[\text{PAN-co-acrylic acid (AA)} \]

\[\text{PAN-co-N-isopropylacrylamide (NIPAM)} \]
Cyclization of Polyacrylonitrile Copolymers

Free radical cyclization (homopolymer)

Ionic cyclization (copolymer)

Homopolymer

Heat Flow (W/g)

Temperature (°C)
Cyclization of Polyacrylonitrile

Polymer dissolved in DMSO solution cast onto KBr salt plate 200 °C for 300 min in N₂

- C=N– peaks (ca. 1595 cm⁻¹) increase with Temp
- C≡N peaks (ca. 2240 cm⁻¹) decrease with Temp
Cyclization of Polyacrylonitrile

CN Fraction = \frac{A_{(-C≡N)}}{A_{(-C≡N)} + f \times A_{(-C=N-)}}

f = 0.29 = ratio of absorptivity constants
The crystalline structure of atactic PAN is mostly planar zigzag.

Crystallinity is governed by copolymer composition this includes:
- Comonomer selection, distribution, and concentration

Systematically increasing the steric bulk of our comonomer will disrupt crystallinity in a controlled manner.

PRECURSOR SOLVATION

• PAN is only soluble in highly polar solvents (DMF, DMSO, DMAc and aqueous solutions of NaSCN or ZnCl$_2$) due to its strong dipole-dipole interactions
 • Wu et al. showed that PAN prefers solvent in the following order: DMSO$_2$ > DMSO > EC > PC > DMF > DMAc
 • Solvent choice can effect gelation, plasticization, morphology, and final mechanical properties

• During white fiber formation, PAN’s coagulation is effected by:
 • Polymer solvent concentration
 • Solvent bath contents and concentration
 • Coagulation bath temperature
 • Winder Rate

Solvent and Coagulation play a crucial role in fiber development

POLYACRYLONITRILE COPOLYMERS: EFFECTS OF **MOLECULAR WEIGHT, POLYDISPERSITY, COMPOSITION, AND SEQUENCING** ON THERMAL RING-CLOSING STABILIZATION

Molecular Weight (Mₙ)

- **Mₙ** ↑:
 - Higher mechanical properties
 - Lower processability
 - Target 100,000 g/mol

Polydispersity Index (PDI)

- **PDI** ↑:
 - Inhomogeneity during processing
 - Lower processability
 - Current fibers PDI ≈ 2–3

Composition

- Bulky comonomers assist processing
- Acidic comonomers facilitate stabilization
- Optimum concentration varies

Sequencing

- Distribution of comonomers along the PAN backbone
 - Gradient vs. uniform
RAFT Polymerization

I. Initiation

II. Addition to CTA

III. Chain Transfer Equilibrium

• Reversible Addition-Fragmentation chain Transfer (RAFT)
 • Control over molecular weight and polydispersity
 • Versatile and robust
 • No metal catalyst required
Semibatch RAFT Copolymerization

- Control the addition of the more reactive monomer
- RAFT slows down polymerization providing time to control structure
- Successfully applied to styrene and butyl acrylate

The Dream

Isolated ANs

SB-1	1.4	0.058	24	97.2	2.8
SB-2	2.8	0.058	48	93.6	6.4
Batch	-	-	-	96.3	3.7

SB = Semibatch

Long AN sequence

- **Acrylonitrile**
- **N-isopropylacrylamide**

Reality

Dream
Semibatch Promotes Cyclization

<table>
<thead>
<tr>
<th>Entry</th>
<th>Injection Volume (mL)</th>
<th>Injection Rate (mL/h)</th>
<th>Duration of Injection (h)</th>
<th>F_{AN} (%)</th>
<th>F_{NIPAM} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB-1</td>
<td>1.4</td>
<td>0.058</td>
<td>24</td>
<td>97.2</td>
<td>2.8</td>
</tr>
<tr>
<td>SB-2</td>
<td>2.8</td>
<td>0.058</td>
<td>48</td>
<td>93.6</td>
<td>6.4</td>
</tr>
<tr>
<td>Batch</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>96.3</td>
<td>3.7</td>
</tr>
</tbody>
</table>
Thermal Degradation of Semibatch

A greater extent of stabilization leads to a more thermally stable ladder structure
Scale-Up 2 mol% NIPAM FR

80 gram reaction (1 L flask) x 3

Fiber spinning by UKY-CAER. Carbonization and TEM by Deakin Univ.
Molecules to Materials
Australian Next Generation Carbon Fibre Strategy

Molecules to White Fibres
- Polymer Precursor Chemistry
- Polymer Precursor Analysis
- Polymer Precursor Solutions
- Polymer Precursor Spinning
- Polymer Precursor Orientation
- Polymer Precursor Surfaces
- Polymer Precursor Morphology
- 1K to 50K White Fibre

White Fibres to Carbon Fibres
- White Fibre Oxidation
- White Fibre Carbonization
- Stabilization Morphology
- Process Development
- Process Controls
- Controlled Pyrolysis
- Tensioning Fibre Orientation
- Carbon Fibre Morphology Analysis
- Carbon Fibre Surface Chemistry
- Carbon Fibre Surface Sizing
- 1K to 50K Tows

Carbon Fibres to Materials
- Polymer Matrix Science
- Prepreg Development
- Low-Cost Processing
- Quickstep Processing
- Infusion Processing
- Autoclave Processing
- Interface / Interphase
- Knitting / Weaving
- Fracture Mechanics
- FEA / Molecular Dynamics

AFFRIC (Deakin / VCAMM / CSIRO)

Students / Science / Research / Innovation